
7.1 NCSA Telnet

Chapter 7 Interactive Color Raster Graphics

Chapter Overview
Interactive Color Raster Graphics
Starting ICR Graphics Emulation
Using the ICR Protocol

Description of the Protocol
ASCII Encoding
Run-Length Encoding Format
Color Maps

ICR Graphics Windows
Allocating Memory
Copying a Graphics Window
System Color Problems

Example ICR Program in C

Interactive Color Raster Graphics 7.1

7.2 NCSA Telnet

Chapter Overview
This chapter introduces the Interactive Color Raster (ICR) protocol and describes
how you may use this protocol in your programs to display color graphics with NCSA
Telnet. In addition, the chapter describes how to control raster graphics windows,
and display and manipulate color images. The chapter includes an example program
that you may use as a template for designing programs that use the ICR protocol.

Interactive Color Raster Graphics
Interactive Color Raster (ICR) is a protocol for displaying raster graphics on your
workstation screen. The ICR protocol controls its own windows through NCSA Telnet.
It shares characteristics of the Tektronix graphics terminal emulation protocol. For
example, escape sequences are used to control the display.

Using ICR, you can write mainframe programs to display color images in their own
windows on your Macintosh screen, and you can apply the full range of 256 colors
out of a palette of 16 million colors to your graphics displays. The ICR protocol is
intended for use on a Macintosh with 256-color capability.

Starting and Quitting ICR Graphics Emulation
To use ICR, you need a program that runs on the remote, or host, computer which
gives all of the appropriate commands to conduct the ICR graphics emulation. To
create an ICR program, work from the protocol description contained in this
chapter's section, "Using the ICR Protocol" and the example program contained in
the section, "Example Program for ICR in C."

When the protocol command for creating a window arrives from the host, NCSA
Telnet creates a Macintosh window for it. All human-readable text continues to go to
the VT102 window and the graphics commands are sent to the proper graphics
window.

The ICR program on the remote computer may choose to take the window away
itself. If it does not, you can dispose of a graphics window by clicking in the close
box, which is located in the upper-left corner of the window's title bar. If you exit
NCSA Telnet while some windows remain open, the windows close automatically.

Interactive Color Raster Graphics 7.2

7.3 NCSA Telnet

Using the ICR Protocol
To use ICR, you write a program that issues graphics commands to NCSA Telnet.
NCSA Telnet receives these commands, interprets them, creates or destroys
windows, sets the color environment, or displays raster graphics as the program
directs.

To ensure that NCSA Telnet can determine the difference between regular text and
ICR graphics, begin all ICR graphics sequence commands with the escape sequence
ESC^ (escape, caret).

Description of the Protocol
Each ICR command has the form:

ESC^X; parameters ^ data

where

• X is one of the command characters listed in Table 7.1 and fully described in Table
7.2.

• ^ is the caret character (ASCII 94).

• parameters is one or more of the parameters of X. The parameters for each
command are listed in Table 7.1.

• the command is terminated with a caret (^).

• each command may be followed by a data stream which goes with it.

The parameters are determined by the command character that is used (Table 7.2).
If your program omits the parameters, then NCSA Telnet supplies default values for
the parameter values. Parameters are always printable ASCII and are delimited by
';'. For commands that require data, the data follows the command.

Table 7.1 ICR Commands
Command Operation
W Creates a window
D Destroys a window
M Loads a color map palette of up to 256 colors from a 24-bit palette
into the graphics window
R Indicates that run-length encoded data follows
P Indicates that pixel data follows
I Indicates that IMCOMP compressed data

(4:1 compression) follows

Interactive Color Raster Graphics 7.3

7.4 NCSA Telnet
Table 7.2 Commands and Command Parameters Described
Command Parameters Description

W

left; top; width; height; display; windowname

Creates a window at the given location on the screen, where 0, 0 is the upper-
leftmost corner of the screen.
• Left, top, width, and height are integers specifying a location and size on

the screen (see Figure 7.1).
• Display is an integer indicating the hardware screen number (for machines

with more than one screen—the parameter is not applicable for
Macintoshes).

• Windowname is a string used to distinguish multiple windows. The
windowname assigned to a window is used by all of the other commands
to specify which window to use.

D

windowname

Destroys a window by physically removing it from the screen and memory.
• Windowname is the unique name assigned to a window when it is created

by the W command.

M

start; length; count; windowname

Loads a color map or portion of one into the display hardware. NCSA Telnet
assumes that palette entries are 8-bit R, G, and B, 3 bytes per entry, in that
order. The default palette is a straight grey-scale ramp, where 0=black and
255=white. (See the section entitled "Color Maps.")
• Start is an integer indicating the first entry to change.
• Length is an integer indicating the number of entries to change.
• Count is an integer indicating the total number of bytes that are in the

data portion. Count is followed by the data for the command.

R

x; y; expand; length; windowname

Specifies that the data to follow is run-length encoded. (See the section
entitled "Run-Length Encoding Format.")
• x, y are integers indicating the point where the raster line starts and the

data follows for length bytes of encoded data.
• Expand is an integer indicating the number of times each dimension is to

be expanded on the local screen. For example, an expand value of 2
makes the picture four times larger.

• Length is an integer indicating the encoded length of the data, in bytes.

P

x; y; expand; length; windowname

Specifies that the data to follow is pixel data.
• x, y are integers indicating the point where the raster line starts and the

data follows for length bytes of pixel data.
• Expand is an integer indicating the number of times each dimension is to

Interactive Color Raster Graphics 7.4

7.5 NCSA Telnet
be expanded on the local screen. For example, an expand value of 2
makes the picture four times larger.

• Length is an integer indicating the length of data, in bytes, which is the
same as the number of pixels to be displayed.

Interactive Color Raster Graphics 7.5

7.6 NCSA Telnet
Table 7.2 Commands and Command Parameters Described (Continued)
Command Parameters Description

I

x; y; expand; length; windowname

Specifies that the data to follow is encoded with the IMCOMP compression
scheme. The M command MUST be used before the picture displayed with the
I command will appear correctly.
• Length is an integer indicating the number of pixels per line, though one 'I'

call represents four lines of data. The IMCOMP compression is a 4x4
SQUARE compression scheme, so each "line" of data will appear as four
lines of pixels on the screen.

• Y is required to increment the line numbers by fours: 0, 4, 8, 12, 16, etc.

Figure 7.1Meaning of the Left, Top, Width, and Height Parameters

top the pixel value of the vertical, or y, location of the upper-left corner of the graphics window
left the pixel value of the horizontal, or x, location of the upper-left corner of the graphics window

height the number of pixels that comprise the vertical height of the graphics window
width the number of pixels that comprise the horizontal width of the graphics window

Integer Meaning width

left

top

height

•

ASCII Encoding
NCSA Telnet assumes that all of the parameter values are printable ASCII except
ESC, which is an allowable exception on most login data streams. This means that
the parameters require no special encoding, but the data values need help.

Your ICR program must encode 8-bit data values into printable ASCII for
transmission. When possible, the values that fall in the printable ASCII range are
passed untouched and all values outside that range are encoded as two bytes.

The following encoding works for all characters 0–255, as shown in Table 7.3.

Interactive Color Raster Graphics 7.6

7.7 NCSA Telnet
Input: realchar
Transmission: specialchar followed by transchar
Encoding: specialchar=realchar div 64 + 123

transchar=realchar mod 64 + 32
Decoding: realchar=(specialchar – 123)*64 + (transchar – 32)

Table 7.3 Encoding Data Values into
Printable ASCII

Special Range
123 0–63
124 64–127
125 128–191
126 192–255

Because all encoded characters are preceded by a char in the range 123–126, all
regular characters that are 32–122 (inclusive) can be sent without encoding.

Warning: On CTSS, trailing spaces are trimmed. Consequently, the values 0, 32,
128, and 192 should be avoided, because they code to <special> <space>.

NOTE: In the specifications, all data lengths and counts refer to the protocol data,
not the ASCII encoded data. The length fields for R, P, and M all reflect the length of
the data on the originating machine before it is encoded.

Run-Length Encoding Format
The data for the run-length encoded line is first run-length compressed and then
ASCII encoded. The process for deciphering, therefore, is first to decode the ASCII to
binary and then to decode the run-length binary data.

Using all eight bits of the byte stream which represents the pixels in a given RLE
line, start with the control character. (n) is the low seven bits of the byte. The high
bit represents whether the following (n) characters are reproduced exactly (high
bit=0) or whether the following single character is reproduced (n) times (high
bit=1).

Input: 1 1 1 1 23 23 23 234 112 33 44 55 42 42 42 42
Tokenized: (128+4) 1 (128+3) 23 (5) 234 112 33 44 55 (128+4) 42
Alternate count, data, count,data

After coding into this tokenized form, the data length for the R command is known.
(The length is 12 in this example). Even though the ASCII encoding takes place after
this step, use the length value from this step.

ASCII result: 125 36 123 33 125 35 123 55 123 37
126 74 112 33 44 55 125 36 42

Interactive Color Raster Graphics 7.7

7.8 NCSA Telnet
Color Maps

You can manipulate the color table for the local display with the M command. The
format for the color map data is a series of color map entries. Each color map entry
is three bytes, one Red, one Green, one Blue. For example, to set entries 3 through
7 of the color table, the following M command might be used:

ESC^M;3;4;12;wind^RGBRGBRGBRGB
where the RGBRGB... data is the list of byte values for the new entries in RGB order.
The actual data transmitted over the line still has to be ASCII encoded, but the data
starts out in this form. Note that the count field, which is 12 in this example, is
always exactly three times the length value, which is 4 in this example.

ICR Graphics Windows
Raster graphics windows require a lot of memory—one byte for each pixel in each
graphics window on the screen. If there is insufficient memory remaining to open a
new window, NCSA Telnet informs you with an alert dialog and does not create the
window.

Allocating Memory
If you are using MultiFinder, you can set NCSA Telnet's allocated memory size to a
larger value to prevent running out of memory. For example, if you need space for
two 256x256 image windows, you need to increase the memory for NCSA Telnet by
128K—256 bytes times 256 bytes (or 64K) for each window.

Copying a Graphics Window
You can copy the contents of an ICR window onto the Macintosh Clipboard, and
paste it into a program that is capable of pasting color images.

To copy the contents of a graphics window:

1. Click in the graphics window to make it frontmost.

2. Choose Copy from the Edit menu. Now you can paste the graphic into another
Macintosh application.

System Color Problems
Image windows utilize the colors available for display on your Macintosh screen.
When you close graphics windows, the system does not always restore the color
environment to its original state, causing other windows to appear with incorrect
colors. We are currently working to minimize the effects of NCSA Telnet and ICR
graphics on your system's color table.

NOTE: Pressing CONTROL-C, or other methods of interrupting ICR commands, may
make NCSA Telnet appear to "lock up" (see also "Telnet Options" in Chapter 4).
When this occurs, press

Interactive Color Raster Graphics 7.8

7.9 NCSA Telnet
RETURN several times or enter commands until the VT102 window resumes activity.
It may help to remember that when a drawing command is issued, NCSA Telnet
expects an influx of a certain number (often hundreds) of bytes of image data to be
used to finish drawing the current line.

Example Program for ICR in C
The sample program shown in Figure 7.2 is included on the distribution disk. It
produces a test pattern on your screen if you are running an active ICR-equipped
NCSA Telnet. If you do not have ICR, it produces thousands of encoded characters
on your display.

Figure 7.2Sample C Program

/* icrtest
*
* Produces a test pattern on an ICR compatible display. Demonstrates and provides example
* code for writing ICR programs.
*
* National Center for Supercomputing Applications
* University of Illinois, Urbana-Champaign
*
* by Tim Krauskopf
* This program is in the public domain.
*
*/
#include <stdio.h>

int
xdim=0,ydim=0; /* size of image on disk */

char
*malloc(),
*testimage,
rgb[768]; /* storage for a palette */

main(argc,argv)
int argc;
char *argv[];
{
register int i,j;
register char *p;

puts("Creating test pattern");

xdim = 150;
ydim = 100;

if (NULL == (testimage = malloc(xdim*ydim)))
exit(1);

/*

Interactive Color Raster Graphics 7.9

7.10 NCSA Telnet
Figure 7.2Sample C Program (Continued)

* Make the test image in a strange pattern.
*/

p = testimage;

for (i=0; i<ydim; i++)
for (j=0; j<xdim; j++) {

*p++ = 50 + (((i & 0xfffffff8) * (j & 7))>>2);
}

puts("Displaying test pattern with the Interactive Color Raster protocol");

rimage(0); /* display remote image with [palette] */

}

/***/

/* rimage
* Remote display of the image using the ICR.
* Just print the codes to stdout using the protocol.
*/

rimage(usepal)
int usepal;
{
int i,j,newxsize;
char *space,*thisline,*thischar;
register unsigned char c;

/*
* Open the window with the W command.
*/

(void)printf("\033^W;%d;%d;%d;%d;0;test window^",0,0,xdim,ydim);

/*
* If a palette should be used, send it with the M command.
*/

if (usepal) {
(void)printf("\033^M;0;256;768;test window^"); /* start map */

thischar = rgb;
for (j=0; j<768; j++) {

c = *thischar++;
if (c > 31 && c < 123) {

putchar(c);
}
else {

putchar((c>>6)+123);
putchar((c & 0x3f) + 32);

}
}

}

/*

Interactive Color Raster Graphics 7.10

7.11 NCSA Telnet
Figure 7.2Sample C Program (Continued)

* Send the data for the image with RLE encoding for efficiency.
* Encode each line and send it.
*/

space = malloc(ydim+100);
thisline = testimage;

 for (i = 0; i < ydim; i++) {
 newxsize = rleit(thisline,space,xdim);

thisline += xdim; /* increment to next line */

 (void)printf("\033^R;0;%d;%d;%d;test window^",i,1,newxsize);

 thischar = space;
 for (j = 0; j < newxsize; j++) {

/***/

/* Encoding of bytes:
*
* 123 precedes #'s 0-63
* 124 precedes #'s 64-127
* 125 precedes #'s 128-191
* 126 precedes #'s 192-255
* overall: realchar = (specialchar - 123)*64 + (char-32)
* specialchar = r div 64 + 123
* char = r mod 64 + 32
*/

/***/

c = *thischar++; /* get byte to send */

if (c > 31 && c < 123) {
putchar(c);

}
else {

putchar((c>>6)+123);
putchar((c & 0x3f) + 32);

}
 }
 }

free(space);
}

/**/

/* rleit
*
* Compress the data to go out with a simple run-length encoded scheme.
*
*/

Interactive Color Raster Graphics 7.11

7.12 NCSA Telnet
Figure 7.2 Example C Program (Continued)

rleit(buf,bufto,len)
int len;
char *buf,*bufto;
{
register char *p,*q,*cfoll,*clead;
char *begp;
int i;

p = buf;
cfoll = bufto; /* place to copy to */
clead = cfoll + 1;

begp = p;
while (len > 0) { /* encode stuff until gone */

q = p + 1;
i = len-1;
while (*p == *q && i+120 > len && i) {

q++;
i--;

}

if (q > p + 2) { /* three in a row */
if (p > begp) {

*cfoll = p - begp;
cfoll = clead;

}
cfoll++ = 128 | (q-p); / len of seq */
*cfoll++ = *p; /* char of seq */
len -= q-p; /* subtract len of seq */
p = q;
clead = cfoll+1;
begp = p;

}
else {

*clead++ = *p++; /* copy one char */
len--;
if (p > begp + 120) {

*cfoll = p - begp;
cfoll = clead++;
begp = p;

}
}

}
/*
* fill in last bytecount
*/

if (p > begp)
*cfoll = 128 | (p - begp);

else
clead--; /* don't need count position */

return((int)(clead - bufto)); /* how many stored as encoded */
}

Interactive Color Raster Graphics 7.12

